Pages

Drop Down MenusCSS Drop Down MenuPure CSS Dropdown Menu

Friday, August 26, 2016

Multiple Integration

Example

Let's evaluate the double integral R6xydA , where R is the region bounded by y=0x=2, andy=x2. We will verify here that the order of integration is unimportant:
Integrating first with respect to y, then with respect to x:
R6xydA = = = = = = 020x26xydydx 023xy2   x2y=0dx 023x5dx 21x6     2x=0 21(64)21(0) 32  
Integrating first with respect to x, then with respect to y:
R6xydA = = = = = = 042y6xydxdy 043x2y   2x=ydy 0412y3y2dy 6y2y3   4y=0 6(4)2(4)36(0)2(0)3 32  

so R6xydA=32  here, regardless of the order in which we carry out the integration, as long as we are careful to set up the limits of integration correctly.
Now for a triple integral...






No comments:

Post a Comment