Example
Let's evaluate the double integral 
 R6xydA
R6xydA R  is the region bounded by y=0 , x=2 , andy=x2 . We will verify here that the order of integration is unimportant:

 R6xydA
R6xydA | Integrating first with respect to   R6xydA = = = = = =  02  0x26xydydx  02  3xy2    x2y=0  dx  023x5dx 21x6        2x=0 21(64)−21(0) 32 | Integrating first with respect to   R6xydA = = = = = =  04  2  y6xydxdy  04  3x2y    2x=  y  dy  04  12y−3y2  dy  6y2−y3     4y=0  6(4)2−(4)3  −  6(0)2−(0)3  32 | 
so 
 R6xydA=32
R6xydA=32 

 R6xydA=32
R6xydA=32 
Now for a triple integral...
 
 
No comments:
Post a Comment